Station

Star system
Station distance
7,785 Ls
Planet
Ousey Rock
Landing pad
Large
Station type
Surface Port

Station services
Commodity marketOutfittingRearmRefuelRepairShipyard

Black marketContactsFleet carrier administrationFleet carrier servicesFleet carrier vendorInterstellar factorsMaterial traderPower contactRedemption officeSearch and rescueTechnology brokerUniversal CartographicsVendorsWorkshop

BartenderConcourseCrew loungeFrontline SolutionsMissionsPioneer SuppliesTuningVista Genomics


Economy
Industrial
Wealth
Population
Government
Democracy
Allegiance
Alliance
Minor faction

Station update
03 Nov 2024, 8:36pm
Location update
03 Nov 2024, 8:36pm
Market update
05 Sep 2024, 8:08pm
Shipyard update
05 Sep 2024, 8:08pm
Outfitting update
05 Sep 2024, 8:10pm

Galpedia

Diophantus

Diophantus of Alexandria (Ancient Greek: Διόφαντος ὁ Ἀλεξανδρεύς; born probably sometime between AD 200 and 214; died around the age of 84, probably sometime between AD 284 and 298) was an Alexandrian mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations. While reading Claude Gaspard Bachet de Méziriac's edition of Diophantus' Arithmetica, Pierre de Fermat concluded that a certain equation considered by Diophantus had no solutions, and noted in the margin without elaboration that he had found "a truly marvelous proof of this proposition," now referred to as Fermat's Last Theorem. This led to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and of Diophantine approximations remain important areas of mathematical research. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality. This term was rendered as adaequalitas in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought.



Wikipedia text is available under the Creative Commons Attribution/Share-Alike License; additional terms may apply. Wikipedia image: Wikipedia / CC-BY-SA-3.0