Station
Similar stations in Daksakhi
Surface Port - 97 Ls
Daksakhi Liberals
Lavrador Holdings
Surface Port - 97 Ls
Southern Cross Armada
Nasmyth City
Starport (Orbis) - 97 Ls
Southern Cross Armada
Hoften Terminal
Starport (Orbis) - 134 Ls
Federal Reclamation Co
Potagos Barracks
Surface Port - 134 Ls
Southern Cross Armada
Rothman Lab
Surface Port - 249 Ls
Southern Cross Armada
Morgan Terminal
Starport (Orbis) - 250 Ls
Daksakhi Liberals
Seddon Barracks
Surface Port - 250 Ls
Daksakhi Liberals
Vernadsky Horizons
Surface Port - 250 Ls
Southern Cross Armada
Teller Dock
Starport (Orbis) - 345 Ls
Federal Reclamation Co
Dalton Enterprise
Outpost (Civilian) - 1,443 Ls
Daksakhi Liberals
Boming Gateway
Outpost (Civilian) - 2,335 Ls
Daksakhi Liberals
Galpedia
Diophantus
Diophantus of Alexandria (Ancient Greek: Διόφαντος ὁ Ἀλεξανδρεύς; born probably sometime between AD 200 and 214; died around the age of 84, probably sometime between AD 284 and 298) was an Alexandrian mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations. While reading Claude Gaspard Bachet de Méziriac's edition of Diophantus' Arithmetica, Pierre de Fermat concluded that a certain equation considered by Diophantus had no solutions, and noted in the margin without elaboration that he had found "a truly marvelous proof of this proposition," now referred to as Fermat's Last Theorem. This led to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and of Diophantine approximations remain important areas of mathematical research. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality. This term was rendered as adaequalitas in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought.
Wikipedia text is available under the Creative Commons Attribution/Share-Alike License; additional terms may apply. Wikipedia image: Wikipedia / CC-BY-SA-3.0